Treating refractory epilepsy in adults

Edward Reynolds

BMJ 2006;332:562-563
doi:10.1136/bmj.332.7541.562

Updated information and services can be found at:
http://bmj.com/cgi/content/full/332/7541/562

These include:

References
This article cites 10 articles, 6 of which can be accessed free at:
http://bmj.com/cgi/content/full/332/7541/562#BIBL

Rapid responses
One rapid response has been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/332/7541/562#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/332/7541/562

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Topic collections
Articles on similar topics can be found in the following collections

Drugs: central nervous system (not psychiatric) (281 articles)
Epilepsy and seizures (356 articles)

Correction
A correction has been published for this article. The contents of the correction have been appended to the original article in this reprint. The correction is available online at:
http://bmj.com/cgi/content/full/332/7546/912

Notes

To order reprints follow the “Request Permissions” link in the navigation box
To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Treating refractory epilepsy in adults

The choice of drug or drug combinations is bewildering

Most adult patients with refractory epilepsy have partial (focal) seizures with or without secondary generalisation. During the 1970s and early 1980s studies showed that in 70–80% of adults with newly diagnosed epilepsy, seizures were controlled successfully by carefully monitored monotherapy with any of the four standard antiepileptic drugs—phenobarbital, phenytoin, carbamazepine, or sodium valproate—all of which seemed to have similar efficacy in partial epilepsy in later comparative trials of monotherapy. Furthermore, adding a second drug for patients with continuing seizures on optimum monotherapy led to modest benefit in no more than one third, a deterioration in seizure control or unacceptable toxicity in about a quarter, and no change in the rest.

These studies led to important questions. Should patients unresponsive to the optimum use of the first drug be switched to alternative monotherapy or treated with polytherapy? If so, which drug or drug combination is appropriate?

Twenty years later these questions remain unanswered. Meanwhile 10 new drugs have been licensed and marketed in the United Kingdom as adjunctive therapy in adults for resistant mainly partial epilepsies: clonazepam, vigabatrin, lamotrigine, gabapentin, topiramate, tiagabine, levetiracetam, oxcarbazepine, pregabalin, and zonisamide.

The only pragmatic controlled clinical trial of adjunctive therapy in partial epilepsy that was unresponsive to a single drug showed that the probability of remaining free of seizures over the next year was 16% for patients on adjunctive therapy and 14% for those switched to alternative monotherapy. The authors emphasised that the trial was statistically underpowered and that they had had difficulty in recruitment because of financial competition from commercial sponsors targeting similar patients for new drug trials. In a prospective observational study of 422 newly diagnosed patients, 47% became seizure free on the first drug and only an additional 14% for those switched to alternative monotherapy. Whereas only 3% were seizure free on a combination of two drugs—all of which implies a need to consider surgery in appropriately selected patients earlier.

Morton Frisch senior researcher
Division of Epidemiology, Department of Epidemiology Research, Statens Serum Institut, DK-2500 Copenhagen S, Denmark

Competing interests: None declared.

Interestingly, freedom from seizures was almost identical, whether patients were treated first with a standard drug or a new drug.

The recent guidelines from the National Institute for Health and Clinical Excellence (NICE) on newer drugs for epilepsy in adults is therefore vague on the management of refractory epilepsy because of a lack of data comparing the new drugs with each other or with standard drugs, either as monotherapy or combination therapy. NICE recommends that combination therapy should be considered only when attempts at monotherapy have not resulted in freedom from seizures but gives no guidance on the number of attempts at monotherapy or which combination to try. I estimate that the bewildered general neurologist or physician can choose from up to 13 options for monotherapy and 91 options for combination therapy. This is clearly an unsatisfactory situation for patients and physicians alike.

Doctors tend to opt for their own favourite combinations, influenced by marketing pressures or based on speculative concepts of different mechanisms of drug action or synergy—concepts that originally led to the subsequently discredited combined capsules of phenobarbital and phenytoin. Switching to alternative monotherapy is more time consuming and requires careful clinical monitoring. It is easier to add a second drug, and if there is some clinical improvement, as occurs in up to one third of patients, it is tempting but possibly erroneous to assume that improvement is due to the combination rather than to the second drug. Such thinking perpetuates the phenomenon and scale of polytherapy. Furthermore, combination therapy increases the risk of side effects, including teratogenicity, especially if the drugs are similar (for example, carbamazepine and oxcarbazepine) or if they interact (for example, lamotrigine and valproate or carbamazepine).

In treating epilepsy in childhood, similar problems arise. Compared with adults, however, children have a much higher incidence of idiopathic generalised epilepsy syndromes, for which some standard or new drugs, such as carbamazepine or vigabatrin, may be inappropriate. In addition, fewer of the new drugs have been licensed for use in children, and comparative data on different drug treatments are even scarcer.

The pharmaceutical industry finances 90% of all clinical trials in the UK. But industry has no interest in supporting large scale, long term pragmatic trials that might provide evidence to reduce much unnecessary polytherapy and therefore restrict the market for many of the newer drugs. Academics specialising in epilepsy will therefore have to clarify, through research, how much real progress has been made in managing resistant epilepsy since the era of phenobarbital and phenytoin.

Edward Reynolds honorary senior lecturer (reynolds@bucklesa.net.com) Institute of Epileptology, King’s College, London SE5 8PJ

Competing interests: None declared.

The burden of chronic kidney disease

Is rising rapidly worldwide

The number of patients with chronic kidney disease worldwide is rising markedly. In the United Kingdom, the annual incidence of end stage renal disease is around 100 per 1 000 000 population. This incidence has doubled over the past decade and is expected to continue to rise by 5-8% annually, but it remains well below the European average (around 135/1 000 000) and that of the United States (356/1 000 000).

Disparities in the incidence of end stage renal disease within and between developed countries reflect racial and ethnic diversity. In the US, the annual incidence is 256/1 000 000 in white people compared with 982/1 000 000 in African-Americans. In Australia, the incidence in white people is comparable to that in the UK (94/1 000 000), but the incidence in aboriginals is 420/1 000 000.

The rise in end stage renal disease worldwide most probably reflects the global epidemic of type 2 diabetes and the ageing of the populations in developed countries, with a higher incidence in elderly people (the annual incidence in people over 65 in the UK is greater than 350/1 000 000, and in the US it is greater than 1200/1 000 000). The number of people with diabetes worldwide, currently around 154 million, is set to double within the next 20 years, and the increase will be
increased administration of fentanyl or diazepam to pregnant women, which increase risks to the women and costs to the health provider, undermine the interests of the women and are unnecessary for fetuses, who have not yet reached a developmental stage that would support the conscious experience of pain.

Conclusion

The neural circuitry for pain in fetuses is immature. More importantly, the developmental processes necessary for the mindful experience of pain are not yet developed. An absence of pain in the fetus does not resolve the question of whether abortion is morally acceptable or should be legal. Nevertheless, proposals to inform women seeking abortions of the potential for pain in fetuses are not supported by evidence. Legal or clinical mandates for interventions to prevent such pain are scientifically unsound and may expose women to inappropriate interventions, risks, and distress. Avoiding a discussion of fetal pain with women requesting abortions is not misguided paternalism but a sound policy based on good evidence that fetuses cannot experience pain.

I thank Peter Giammaro for critiquing an earlier version of this manuscript, Ian Apperly for critical review comments and additions to figure 1, and Maria Fitzgerald for review of figure 1. Contributors and sources: SWGD has studied and reported widely on pain and the difficulty of subjectivity. This article arose from several discussions on possible changes in abortion law to widely on pain and the difficulty of subjectivity. This article arose from several discussions on possible changes in abortion law to