Current concepts in the diagnosis and treatment of typhoid fever

Zulfiqar A Bhutta

BMJ 2006;333;78-82
doi:10.1136/bmj.333.7558.78

Updated information and services can be found at:
http://bmj.com/cgi/content/full/333/7558/78

These include:

Data supplement
“Extra references”
http://bmj.com/cgi/content/full/333/7558/78/DC1

References
This article cites 20 articles, 4 of which can be accessed free at:
http://bmj.com/cgi/content/full/333/7558/78#BIBL

2 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/333/7558/78#otherarticles

Rapid responses
2 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/333/7558/78#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/333/7558/78

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Notes

To order reprints follow the “Request Permissions” link in the navigation box

To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Clinical review

Current concepts in the diagnosis and treatment of typhoid fever
Zulfiqar A Bhutta

Although advances in public health and hygiene have led to the virtual disappearance of enteric fever (more commonly termed typhoid fever) from much of the developed world, the disease remains endemic in many developing countries. Typhoid fever is caused by *Salmonella enterica* serovar *Typhi* (*S* typhi), a Gram-negative bacterium. A similar but often less severe disease is caused by *S* *paratyphi* A and, less commonly, by *S* *paratyphi* B (Schotmulleri) and *S* *paratyphi* C (Hirschfeldii). The common mode of infection is by ingestion of an infecting dose of the organism, usually through contaminated water or food. Although the source of infection may vary, person to person transmission through poor hygiene and sewage contamination of water supply are the most important.

Have the epidemiology and burden estimates of typhoid changed?

Few established surveillance systems for typhoid exist in the developing world, especially in community settings, so the true burden is difficult to estimate. This is shown by recent revisions in the global estimates of the true burden of typhoid. In contrast to previous estimates, which were 60% higher, investigators from the US Centers for Disease Control and Prevention estimate that there are 21.6 million typhoid cases annually, with the annual incidence varying from 100 to 1000 cases per 100 000 population. The global mortality estimates from typhoid have also been revised downwards from 600 000 to 200 000, largely on the basis of regional extrapolations. Recent population based studies from South Asia suggest that the incidence is highest in children aged less than 5 years, with higher rates of complications and hospitalisation, and may indicate risk of early exposure to relatively large infecting doses of the organism in these populations. These findings contrast with previous studies from Latin America and Africa, which suggested that *S* *typhi* infection caused a mild disease in infancy and childhood.

There may be other factors that affect the changing epidemiology of typhoid. Although the overall ratio of disease caused by *S* *typhi* to that caused by *S* *paratyphi* is about 10 to 1, the proportion of *S* *paratyphi* infections is increasing in some parts of the world (Dong Mei Tan, personal communication 2005).

Another worrying development has been the emergence of drug resistant typhoid. After sporadic outbreaks of chloramphenicol resistant typhoid between 1970 and 1985, many strains of *S* *typhi* developed plasmid mediated multidrug resistance to the three primary antimicrobials used (ampicillin, chloramphenicol, and co-trimoxazole). This was countered by the advent of oral quinolones, but chromosomally acquired quinolone resistance in *S* *typhi* and *S* *paratyphi* has been recently described in various parts of Asia, possibly related to the widespread and indiscriminate use of quinolones.
Can typhoid be diagnosed clinically where it matters?

Typhoid fever is among the most common febrile illnesses encountered by practitioners in developing countries. The advent of antibiotic treatment has led to a change in the presentation of typhoid, and the classic mode of presentation with a slow and “stepladder” rise in fever and toxicity is rarely seen. However, rising antimicrobial resistance has been associated with increased severity of illness and related complications.

Many other factors influence the severity and overall clinical outcome of the infection. They include the duration of illness before the start of appropriate treatment, the choice of antimicrobial, the patient’s age and exposure or vaccination history, the virulence of the bacterial strain, the quantity of inoculum ingested, and several host factors affecting immune status. Recent data from South Asia indicate that the presentation of typhoid may be more dramatic in children younger than 5 years, with higher rates of complications and hospitalisation. Diarrhoea, toxicity, and complications such as disseminated intravascular coagulation are also more common in infancy, with higher mortality. Table 1 shows some of the common clinical features and complications of typhoid in children and adults based on our experience in Karachi of hospitalised children and those diagnosed and treated in a community setting, indicating the significantly higher morbidity and complications among children presenting to hospital.

The presentation of typhoid fever may be altered by coexisting morbidities and early administration of antibiotics. In areas where malaria is endemic and where schistosomiasis is common the presentation of typhoid may be atypical. Multidrug resistant typhoid and paratyphoid infections are more severe with higher rates of toxicity, complications, and mortality than infections with sensitive strains. This may be related to the increased virulence of multidrug resistant S typhi as well as a higher number of circulating bacteria. Although clinical diagnosis of typhoid may be difficult, there are indications that simple algorithms can be developed for diagnosis and patient triage in endemic areas. Such algorithms would have implications for diagnostic and treatment protocols in endemic areas: in particular, diagnosis and triage of typhoid among febrile children must be included among the protocols for integrated management of childhood illnesses in South Asia, which currently largely focus on malaria as a cause of fever without localising signs.

The challenge of appropriate diagnostics in typhoid

Although the mainstay of diagnosing typhoid fever is a positive blood culture, the test is positive in only 40-60% of cases, usually early in the course of the disease. Stool and urine cultures become positive after the first week of infection, but their sensitivity is much lower. In much of the developing world, widespread antibiotic availability and prescribing is another reason for the low sensitivity of blood cultures. Although bone marrow cultures are more sensitive, they are difficult to obtain, relatively invasive, and of little use in public health settings.

Other haematological investigations are non-specific. Blood leucocyte counts are often low in relation to the fever and toxicity, but the range is wide; in younger children leucocytosis is a common association and may reach 20 000-25 000/mm^3^4,15. “Thrombocytopenia may be a marker of severe illness and accompany disseminated intravascular coagulation. Liver function test results may be deranged, but significant hepatic dysfunction is rare.

The classic Widal test measures antibodies against O and H antigens of S typhi and is more than 100 years old. Although robust and simple to perform,
Clinical review

NA=Not available.

developed—such as the Typhidot typhoid.

febrile illnesses, especially malaria, dengue fever, and allow the rapid and specific diagnosis of common

need to develop a multipurpose “fever stick” that may

viral infections such as dengue fever, acute hepatitis,
tularaemia, leptospirosis, and rickettsial diseases; and
other bacterial pathogens; infections caused by intra-
cellular organisms such as tuberculosis, brucellosis,
tularaemia, leptospirosis, and rickettsial diseases; and
viral infections such as dengue fever, acute hepatitis,
and infectious mononucleosis. There is thus an urgent

differential diagnosis includes malaria; sepsis with
abdominal distension require hospitalisation and

illness, persistent vomiting, severe diarrhoea, and

biotics and regular follow-up, patients with severe
illness, persistent vomiting, severe diarrhoea, and

this test lacks sensitivity and specificity, and reliance on
it alone in areas where typhoid is endemic may lead to

overdiagnosis.46-48 Newly diagnostic tests have been
developed—such as the Typhidot47-48 or Tubex,49-50 which
directly detect IgM antibodies against a host of
specific S typhi antigens—but these have not proved to
be sufficiently robust in large scale evaluations in com-

munity settings. A nested polymerase chain reaction
using H1-d primers has been used to amplify specific
genes of S typhi in the blood of patients and is a promis-
ing means of making a rapid diagnosis.41 Table 2
compares the performance of the various tests for
typhoid.47-48

Despite these new developments, the diagnosis of
typhoid in much of the developing world is made on
clinical criteria. This poses problems, since typhoid
fever may mimic many common febrile illnesses with-

out localising signs. In children with multisystem
features, the early stages of enteric fever may be
confused with conditions such as acute gastroenteritis,
bronchitis, and bronchopneumonia. Subsequently, the
differential diagnosis includes malaria; sepsis with
other bacterial pathogens; infections caused by intra-
cellular organisms such as tuberculosis, brucellosis,
tularaemia, leptospirosis, and rickettsial diseases; and
viral infections such as dengue fever, acute hepatitis,
and infectious mononucleosis. There is thus an urgent
need to develop a multipurpose “fever stick” that may
allow the rapid and specific diagnosis of common
febrile illnesses, especially malaria, dengue fever, and
typhoid.47-48

How has drug resistance affected treatment?

Early diagnosis of typhoid fever and prompt institution
of appropriate antibiotic treatment are essential for
optimal management, especially in children. Although
most cases can be managed at home with oral anti-

Table 2 Laboratory diagnosis of typhoid

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>Sensitivity range (%)</th>
<th>Specificity range (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood culture</td>
<td>40-80</td>
<td>NA</td>
<td>Widely regarded as the gold standard, but sensitivity may be low in endemic areas with high rates of antibiotic use—hence true specificity is difficult to estimate</td>
</tr>
<tr>
<td>Bone marrow cultures</td>
<td>55-67</td>
<td>30</td>
<td>Greater sensitivity but invasive and thus of limited clinical value, especially in ambulatory management</td>
</tr>
<tr>
<td>Urine culture</td>
<td>0-58</td>
<td>NA</td>
<td>Variable specificity</td>
</tr>
<tr>
<td>Stool culture</td>
<td>30</td>
<td>NA</td>
<td>Sensitivity lower in developing countries and not used routinely for follow-up</td>
</tr>
<tr>
<td>Molecular diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>100</td>
<td>100</td>
<td>Promising, but initial reports indicated similar sensitivity to blood cultures and lower specificity</td>
</tr>
<tr>
<td>Nested polymerase chain reaction</td>
<td>100</td>
<td>100</td>
<td>Promising and may replace blood culture as the new “gold standard”</td>
</tr>
<tr>
<td>Serological diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widal test (tube dilution and slide agglutination)</td>
<td>47-77</td>
<td>50-92</td>
<td>Classic and inexpensive. Despite mixed results in endemic areas, still performs well for screening large volumes. May need standardisation and quality assurance of reagents</td>
</tr>
<tr>
<td>Typhidot</td>
<td>66-88</td>
<td>75-81</td>
<td>Lower sensitivity than Typhidot-M</td>
</tr>
<tr>
<td>Typhidot-M</td>
<td>73-95</td>
<td>68-95</td>
<td>Higher sensitivity and specificity than classic Typhidot in some series, but other evaluations suggest that the performance may not be as robust in community settings as in hospital</td>
</tr>
<tr>
<td>Tubex</td>
<td>65-88</td>
<td>63-69</td>
<td>Promising initial results but has yet to be evaluated in larger trials in community settings</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine antigen detection</td>
<td>65-95</td>
<td>NA</td>
<td>Preliminary data only</td>
</tr>
</tbody>
</table>

Table 2: Laboratory diagnosis of typhoid

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>Sensitivity range (%)</th>
<th>Specificity range (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood culture</td>
<td>40-80</td>
<td>NA</td>
<td>Widely regarded as the gold standard, but sensitivity may be low in endemic areas with high rates of antibiotic use—hence true specificity is difficult to estimate</td>
</tr>
<tr>
<td>Bone marrow cultures</td>
<td>55-67</td>
<td>30</td>
<td>Greater sensitivity but invasive and thus of limited clinical value, especially in ambulatory management</td>
</tr>
<tr>
<td>Urine culture</td>
<td>0-58</td>
<td>NA</td>
<td>Variable specificity</td>
</tr>
<tr>
<td>Stool culture</td>
<td>30</td>
<td>NA</td>
<td>Sensitivity lower in developing countries and not used routinely for follow-up</td>
</tr>
<tr>
<td>Molecular diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>100</td>
<td>100</td>
<td>Promising, but initial reports indicated similar sensitivity to blood cultures and lower specificity</td>
</tr>
<tr>
<td>Nested polymerase chain reaction</td>
<td>100</td>
<td>100</td>
<td>Promising and may replace blood culture as the new “gold standard”</td>
</tr>
<tr>
<td>Serological diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widal test (tube dilution and slide agglutination)</td>
<td>47-77</td>
<td>50-92</td>
<td>Classic and inexpensive. Despite mixed results in endemic areas, still performs well for screening large volumes. May need standardisation and quality assurance of reagents</td>
</tr>
<tr>
<td>Typhidot</td>
<td>66-88</td>
<td>75-81</td>
<td>Lower sensitivity than Typhidot-M</td>
</tr>
<tr>
<td>Typhidot-M</td>
<td>73-95</td>
<td>68-95</td>
<td>Higher sensitivity and specificity than classic Typhidot in some series, but other evaluations suggest that the performance may not be as robust in community settings as in hospital</td>
</tr>
<tr>
<td>Tubex</td>
<td>65-88</td>
<td>63-69</td>
<td>Promising initial results but has yet to be evaluated in larger trials in community settings</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine antigen detection</td>
<td>65-95</td>
<td>NA</td>
<td>Preliminary data only</td>
</tr>
</tbody>
</table>

Blood culture 40-80 NA Widely regarded as the gold standard, but sensitivity may be low in endemic areas with high rates of antibiotic use—hence true specificity is difficult to estimate

Bone marrow cultures 55-67 30 Greater sensitivity but invasive and thus of limited clinical value, especially in ambulatory management

Urine culture 0-58 NA Variable specificity

Stool culture 30 NA Sensitivity lower in developing countries and not used routinely for follow-up

Polymerase chain reaction 100 100 Promising, but initial reports indicated similar sensitivity to blood cultures and lower specificity

Nested polymerase chain reaction 100 100 Promising and may replace blood culture as the new “gold standard”

Widal test (tube dilution and slide agglutination) 47-77 50-92 Classic and inexpensive. Despite mixed results in endemic areas, still performs well for screening large volumes. May need standardisation and quality assurance of reagents

Typhidot 66-88 75-81 Lower sensitivity than Typhidot-M

Typhidot-M 73-95 68-95 Higher sensitivity and specificity than classic Typhidot in some series, but other evaluations suggest that the performance may not be as robust in community settings as in hospital

Tubex 65-88 63-69 Promising initial results but has yet to be evaluated in larger trials in community settings

Others

Urine antigen detection 65-95 NA Preliminary data only

Box 1: General principles for the management of typhoid

- Rapid diagnosis and institution of appropriate antibiotic treatment
- Adequate rest, hydration, and correction of fluid-electrolyte imbalance
- Antipretic therapy as required (such as paracetamol 120-750 mg taken orally every 4-6 hours)
- Adequate nutrition: a soft, easily digestible diet should be continued unless the patient has abdominal distension or ileus
- Close attention to hand washing and limitation of close contact with susceptible individuals during acute phase of infection
- Regular follow-up and monitoring for complications and clinical relapse (this may include confirmation of stool clearance in non-endemic areas or in high risk groups such as food handlers)

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>Sensitivity range (%)</th>
<th>Specificity range (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood culture</td>
<td>40-80</td>
<td>NA</td>
<td>Widely regarded as the gold standard, but sensitivity may be low in endemic areas with high rates of antibiotic use—hence true specificity is difficult to estimate</td>
</tr>
<tr>
<td>Bone marrow cultures</td>
<td>55-67</td>
<td>30</td>
<td>Greater sensitivity but invasive and thus of limited clinical value, especially in ambulatory management</td>
</tr>
<tr>
<td>Urine culture</td>
<td>0-58</td>
<td>NA</td>
<td>Variable specificity</td>
</tr>
<tr>
<td>Stool culture</td>
<td>30</td>
<td>NA</td>
<td>Sensitivity lower in developing countries and not used routinely for follow-up</td>
</tr>
</tbody>
</table>
endemic.20 In recent years, however, the emergence of resistance to quinolones has placed tremendous pressure on public health systems in developing countries as treatment options are limited.21,22 Table 3 shows the World Health Organization’s recommendations for treating uncomplicated and severe cases of typhoid fever.17 Studies of short course antibiotic treatment for multidrug resistant typhoid have shown that fluoroquinolones can achieve satisfactory cure rates,19 but parenteral ceftriaxone was associated with higher rates of relapse.20 A recent Cochrane review of antimicrobial treatment of typhoid fever concludes that there is little evidence to support administration of fluoroquinolones to all cases of typhoid and that satisfactory cure rates can be achieved in drug sensitive cases with first line agents such as chloramphenicol.23 Although some open studies have suggested that cure rates may be better with oral fluoroquinolones compared with chloramphenicol,24 these case series also include multidrug resistant cases. Given the signs of rapidly increasing resistance of \textit{S typhi} to fluoroquinolones, it is imperative that the widespread use of these antibiotics for fever and their availability over the counter are restricted, although it may already be too late.25 However, treatment regimens must restrict as much as possible the use of further second and third line antibiotics for treating typhoid in primary care settings.25

Table 3 Recommended antibiotic treatment for typhoid fever (adapted from WHO19 and Bhutta20)

<table>
<thead>
<tr>
<th>Susceptibility</th>
<th>Uncomplicated typhoid fever</th>
<th>Severe typhoid fever requiring parenteral treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimal treatment</td>
<td>Alternative effective treatment</td>
</tr>
<tr>
<td></td>
<td>Drug</td>
<td>Daily dose (mg/kg)</td>
</tr>
<tr>
<td>Fully sensitive</td>
<td>Fluoroquinolone (such as ofloxacin or ciprofloxacin)</td>
<td>15</td>
</tr>
<tr>
<td>Multidrug resistance</td>
<td>Fluoroquinolone or Cefixime</td>
<td>15</td>
</tr>
<tr>
<td>Quinolone resistant†</td>
<td>Azithromycin or Cefixime</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>Cefixime</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Cefixime</td>
<td>20</td>
</tr>
</tbody>
</table>

*Three days courses also effective, particularly so in epidemic containment.
†Optimum treatment for quinolone resistant typhoid fever has not been determined. Azithromycin, third generation cephalosporins, or a 10-14 day course of high dose fluoroquinolone is effective. Combinations of these are now being evaluated.

Despite appropriate treatment, some 2-4% of infected children relapse after initial clinical response to treatment.19 Individuals who excrete \textit{S typhi} for more than three months after infection are regarded as chronic carriers. However, the risk of becoming a carrier is low in children and increases with age, but in general it occurs in less than 2% of all infected children.27

In summary, many challenges remain for the effective control and management of typhoid in endemic countries. Although these include establishing rapid clinical diagnosis and confirmation, the fact that both \textit{S typhi} and \textit{S paratyphi} are rapidly becoming resistant

Box 2: Advice for travellers to areas where typhoid is endemic

- Avoid undue exposure to possible infection through food and water (contaminated water, salads, street foods). Use boiled water whenever possible, otherwise use only boiled water
- Two typhoid vaccines are available, both with proved efficacy of 60-80%, and should be taken at least two weeks before travel
 - Oral Ty21a vaccine—Enteric coated capsules taken on alternate days for four doses. The vaccine is contraindicated in pregnant women, children under the age of 6 years, and immunocompromised patients. A booster may be required every five years
 - Vi polysaccharide vaccine—0.5 ml as a single intramuscular dose for travellers older than 2 years
- A booster may be required every two years
- Further advice on typhoid prevention and vaccination can be obtained from
 - Centers for Disease Control and Prevention (www.cdc.gov/travel)
 - World Health Organization (www.who.int/ith)
 - International Society of Travel Medicine (www.istm.org)
 - Travel Doctor (www.traveldoctor.co.uk/diseases.htm)
to commonly used antibiotics is of great concern. Addressing this issue would require a host of measures, including adequate investments in safe water and sanitation services, community education, control over antimicrobial prescribing and over the counter sales, and large scale vaccination strategies. Box 2 details some of the preventive strategies and advice for travelers to areas where typhoid is declared.

Competing interests: None declared.

(Accepted 5 June 2006)